
N95- 31241

Applying Program Comprehension Techniques to
Improve Software Inspections

Stan Rifkin
Master Systems Inc.

P.O. Box 8208
McLean, VA 22106
sr@seas.gwu.eclu

Uonel Deimel :
1408 Navahoe Dr. -

Pittsburgh, PA 15228
bmtm05a@prodigy.com

Abstract: Software inspections are widely regarded as a cost-effective mechanism
for removing defects in software, though performing them does not always
reduce the number of customer-discovered defects. We present a case study in
which an attempt was made to reduce such defects through inspection training
that introduced program comprehension ideas. The training was designed to
address the problem of understanding the artifact being reviewed, as well as

other perceived deficiencies of the inspection process itself. Measures, both for-
mal and informal, suggest that explicit training in program understanding may
improve inspection effectiveness.

The software technical review is a widely -recommended mechanism for software defect removal.
Such reviews go by many names--inspections, Fagan-style inspections, code reviews, peer
reviews, formal reviews---and exhibit significant variations among organizations [Fagan, Freed-
man, Gilb]. All such review methods rely on the self-evident notion that software professionals
are likely to find defects in software if they actually look at the products they produce. A software
technical review is a meeting--along with its preparation--in which a group of software profes-
sionals (peers) does exactly that. Types of reviews are distinguished from one another by the
rules governing how that examination takes place and how it relates to the overall software

development or maintenance process. Impressive claims are made for the efficacy of reviews
[Humphrey].

What follows is a case study in which developers were given, along with traditional (and non-
traditional) instruction, explicit instruction in program comprehension concepts and techniques.
The case study suggests that software engineers often have poor strategies for understanding the
artifacts they are called upon to review and that providing training in comprehension skills can
improve their performance significantly.

A Training Opportunity

One of the authors (Rifkin) was engaged by a manufacturing firm that we will call Widget, Inc.]
Widget management, having read the literature on software inspections, had expected the intro-
duction of this practice to produce a significant decline in customer-discovered defects. The
anticipated decline had not occurred, however, either in the number or percentage of defects
identified by customers.

1 The firm wishes to remain anonymous and does not want to divulge raw data on defects, which it

considers proprietary. The data in this paper are presented in a manner intended to respect those wishes.

SEW Proceedings 115
SEL-94-006

Previous engagements had investigated the common experience that, while the percentage of
defects discovered by testing prior to product release declines precipitously after the introduction
of inspections, customer-discovered defects show no significant decrease. This is not to say that
inspections are not useful or cost-effective. In large measure, however, they seem to identify
defects that might otherwise be found using a more expensive method--testing--rather than
reduce the overall number of defects in released software.

We had hypothesized that introducing Inspections often had had little effect on reducing cus-
tomer-identified defects because, although reviewers were being thoroughly trained in the group
aspects of the inspection process, they were being given little guidance as to how to precisely
carry out their preparatory study of work products in the privacy of their own offices. It was
generally assumed that reviewers knew how to look for defects, any data to the contrary notwith-
standing. This hypothesis had led to the development of a training program on those previous
engagements that was intended to be more comprehensive, and this enhanced training was
brought to Widget. It incorporated an introduction to program comprehension based on the
Deimel and Naveda report from the Software Engineering Institute, "Reading Computer Pro-
grams: Instructor's Guide and Exercises" [Deimel90].

Widget, Inc.

Widget is a large-scale manufacturing company. One particular section produces software for
engineering computations. There used to be two groups in this section, which we will call Group
2 and Group 3. Each group comprised about 30-35 software professionals who regularly per-
formed inspections. Group 2 had been trained in performing inspections by Michael Fagan
[Fagan], and Group 3 had received training from Tom Gilb [Gilb]. Group 2 had received training
about five years prior to our engagement, and Group 3 had received training about three years
prior. The two groups had developed a number of large FORTRAN programs, and their current
duties predominantly involved maintaining and enhancing those programs. Another unit, which
we will call Group 1, was about 18 months old. It, too, comprised 30-35 professionals, nearly all

of whom had worked previously in one of the two other groups. Group I maintained and en-
hanced a suite of computer-aided design and computer-aided manufacturing programs written
in FORTRAN, C, and several script languages. The source code of some of the programs had
been purchased. Staff turnover in all three groups was low.

The customers (users) of the software for which the section was responsible were Widget engi-
neers. Although these engineers were organized into a number of separate units, they constituted
a substantially homogeneous customer base for all three development groups. Each major
customer unit has one or two representatives responsible for collecting issues (including bugs
and desired features) and negotiating their resolution with the developers.

Some Group I members had received inspections training from Fagan and some from Gilb. This
difference in backgrounds and the perceived incompatibility of the Fagan and Gilb methods had
inhibited their use of inspections. Group I management sought to routinize inspections through
training that fostered a common understanding of inspections. After some discussion with that
management, however, reduction of customer-discovered defects became the dominant goal of
the proposed engagement. It was necessary to define a single inspection process for Group 1, of
course; moreover the members of Group 1 were already "sold" on inspections and did not need

specific encouragement to perform them.

The Training Workshop

The normal Master Systems 1_2 day inspections training workshop was presented at Widget for

the members of Group 1, with half the group attending each of two offerings. The workshop fol-
lowed this syllabus:

SEW Proceedings 116
SEL-94-006

Day '_(full -day)

* DEFINITION OF INSPECTIONS, EXPECTED BENEFITS: Description of the "common"
software inspection process and its documented benefits.

• INTRODUCTION TO THE INSPECTION PROCESS: Details of the usual steps before,
during, and after an inspection defect collection meeting.

• INTRODUCTION TO READING COMPREHENSION: Discussion of how we come to

under stand what we read and how that process can be made more effective.

• DEVELOPMENT OF THE INSPECTION PROCESS: What are the requirements for inspec-

tions? What is a process that will fulfill those requirements? Two types of work

products are chosen to be inspected.

In Between (outside work done by participants)

• CONTINUED DEVELOPMENT OF THE INSPECTION PROCESS: Participants, having

each been assigned to one of three groups, meet either to complete a full description of

the inspection process or to develop checklists for each of the two work product types.

• SELECTION AND STUDY OF ARTIFACTS: The groups responsible for composing

checklists select existing artifacts for practice inspections. Each workshop participant
reviews one of these privately, in preparation for the inspections on Day 2.

Day 2 (half day)

• PRACTICE INSPECTIONS: Inspections of the selected artifacts allow participants to

practice taking the four r61es of producer, moderator, recorder, and reviewer using the
selected artifact.

• DEBRIEF: Discussion of what has been learned and how it can be applied on the job.

Days 1 and 2 were a week apart. Approximately two hours of the instruction time on Day 1 were

devoted to understanding programs. This material was to be applied during the In Between

time, when the artifacts selected were studied privately by each participant for approximately
two hours.

Much of the material on program comprehension was taken from or suggested by the report by

Deimel and Naveda. (The report makes a case for the importance of teaching program reading

skills, reviews the relevant literature, discusses how program reading can be taught, and illus-
trates teaching suggestions using a substantial Ada program. It contains an extensive, annotated

bibliography.) The workshop introduced a simple model of program comprehension, discussed

comprehension goals for reading, and gave participants both general and specific strategies for

understanding programs. Instead of using Deimel's and Naveda's case study, actual artifacts

from Widget were used to illustrate comprehension issues, concerns, and principles.

An example of the material in the comprehension unit is a brief discussion of how we come to

understand what we read. We assume there exists an independent reality, the real world. We are

interested in a small portion of that reality that is our particular application area. We think of the

appl_,at/on as an abstraction of the real world. Our job as systems developers is to translate the
features of that abstraction into the computer domain. There are thus two translations to be dealt

with, the first from the real world into application terms, and the second from the application

domain into computer terms. We come to understand these different domains (real world, appli-

cation, and computer) by constructing models of them, and then we test those models by having
a dialogue [Sch6n] with them in light of what we seek to accomplish (that is, compute). Reading

and understanding a program is a complex process of translating, interpreting, and hypothesis

testing among these (and possibly intermediate) domains.

SEW Proceedings 117 SEL-94-006

In addition to the introduction of program comprehension material, there are three aspects of our

form of inspection instruction that are distinctive that differ from "traditional" instruction, and

may therefore have had some influence on the effectiveness of instruction and the conduct of

inspections. First, we develop the process of inspection during the course, from the requirements

and design elicited there. We do not arrive with a prepared process.

Second, the participants develop their own checklists based on ones available in the public

domain that we supply. The participants usually develop two sets of checklists, one for each type

of artifact they decide is most important for them to inspect. Code and requirements are the typi-
cal choices. Again, we do not arrive with the final, 'q_est" checklists.

Third, the workshop participants select the artifacts to be inspected, one artifact of each type. Our
advice is to select the oldest, most reliable arti facts that can be found. That way, finding defects

using the new inspections process impresses even the most skeptical participants.

Results

Because the training of Group 1 grew, in part, out of dissatisfaction with the number of defects

still found by customers, it was natural to examine customer defect reports for evidence of im-

provement. This was easily done, as written defect reports were received daily and were handled
in the same, standard manner for all three groups. Reported defects were classified as "critical,"
"serious," or "other." Critical defects were those that either crashed the system or prevented the

application from proceeding. Serious defects resulted in the production of wrong answers. All
less severe defects were classified as "other. "2

Of course, the software engineers trained in our two workshops took some time to begin apply-
ing the material presented. Moreover, only after inspected materials were released and in the

field for a time did they begin to generate customer defect reports. From a detailed analysis of

defect reports, it was determined that reports applying to software released by Group 1 made the

transition from being predominately about l_-workshop modules to referring to op_9__-

workshop-inspected modules approximately eight weeks after the training was completed. After

this time, post-workshop-inspected modules continued to predominate in the defect report

stream for Group 1. About 40 days after this time, defect reports were nearly exclusively about

software inspected after the training.

The transition between defect reports of pre- and post-workshop work products was short

because most customer-discovered defects relate to fixes or enhancements requested by the cus-

tomers themselves. Newly delivered code is checked immediately upon delivery by the cus-

tomers or their representatives, who want to make sure it works correctly.

In order to establish a baseline to characterize error reports before our training workshops could

exert any influence on behavior, we examined defect reports before and after the last workshop,

counting critical and serious defects only. According to our analysis, there was no change in the

pattern of Group 1 defects until about 10 working days 3 after the perceived inspection process

2 Each of the groups also classified the type of error, though each used a different scheme. Groups 2 and 3
created their own, different defect categories, and Group 1 was trained in orthogonal defect classification
[ChiUarege]. The incompatibility of these defect taxonomies precluded drawing meaningful inferences about
the differences in the types of defects detected.

3 The data presented cover regular work days and exclude weekends and holidays, on which customer
representatives do not normally work Note that the modules most heavily used at any given time depend

on the point in the product-development life cycle at which customers are working We did not try to
account for effects that might have been attributable to changing usage patterns, in part because, across the

SEW Proceedings 118
SEL-94-O06

changeover point referred to above. Groups 2 and 3 showed essentially steady-state behavior

during this entire period, as one would expect. We therefore used the 10 days before the pattern

of reported Group I defects began to change as our baseline period. Reports of critical and seri-

ous defects for which each of the three groups was responsible were counted during this period,

and the average number of defects per day for each group was computed. Rather than present-

ing numbers of defects, we have expressed the data values as a percentage of the baseline average
for each group. This seemed a fair way to measure pre-workshop (baseline) performance because

(1) the groups were performing comparable tasks, (2) the groups had similar customer-identified
defect rates, and (3) all groups inspected some of their work products, but not all.

300%

250%

., 2O0%

o

150%

_ 100%

50%

0%

Fig. 1. Number of po6t release cdtical and sedous defect reports of Groups

1-0 by day, expressed as percentage of baseline average.

1 11 21 31 41 51 61

Work day aumb_

7] 61 91 lCrl

The actual number of critical and serious defect reports received daily for each of the three

groups was plotted for 110 days, beginning on the first day of the 10-day baseline period. These
data are shown in Figure 1. We could have gone back much further than 10 days, but there

would have been no change in the patterns seen. Plots by defect type (critical, serious, other)
reveal the same pattern as the plots shown.

As might be expected, the data for Groups 2 and 3 vary around 100%, roughly between 0 and 2.5

times the average number of reports in the baseline period per day. The Group 1 data, on the
other hand, are distinctive, after the first 10 days.

The customer-reported defects come directly from reports submitted by customers. Figure 1

shows the (normalized to 100%) number of defects recorded on such reports each day. Although
the data do include multiple reports of the same defects, there are, in fact, few such duplications.

The users are closely-knit and generally decide together to submit defect reports. Group 3 dis-

puted the validity of several reports (that is, its members believed that no defect was indicated),

and these are not represented; on days on which all of the Group 3 defects were disputed there is

three groups, there is considerable parallelism among the dozen or so products undergoing user
development.

SEW Proceedings 119 SEL-94-006

a zero count. 4 Group 1, on the other hand, decided, as a matter of policy, that any customer-

reported defect/s a defect,/pso facto.

It would have been useful to have been able to collect and compare defect densities, error injec-

tion rates, productivity, and other statistical measures of cross-group differences and similarities.
No such measures were available, at least in part because none of the groups use an automated

configuration management system, which could track easily the actual changes in code. Also, the
lack of software configuration management made it impractical for us to ascertain the rate of
errors introduced while trying to fix bugs, which can be quite large. We observe, though, that
Groups 2 and 3 have been in existence longer than Group I and therefore may be more "mature"
in some sense.

Analysls

Figure 1 suggests dramatic improvement in the post-workshop performance of Group 1. During
the first 10 days, all three groups display the same up-and-down behavior of the number of
defects attributable to their work. (There is no reason to expect that the number of reports should
be constant from day-to-day.) In terms of absolute numbers, Group 1 was in the middle of the

pack, as it had been for the previous 18 months. Then, after the products that Group I produced
and inspected using the workshop methods begin to be released, there is a clear decrease in the
number of post-release defects, those discovered by users. As can be seen from the scale of Fig-
ure 1, the rate drops to about 10% of the baseline average. In other words, there was a 90%
reduction in the number of post-release defects per day discovered by users.

300%

25O%

:= 200%

.D

150%

100%
r_

50%

Fig. 2. Number of post release critcial and serious defect
reports by Group 1 ¢'llifkin"} by day, as expressed as

percentage of baseline.

1 11 21 31 41 51 61 71 81 91 101

Work day number

4 A zero count occurs when the development group does not agree that the user has found an error. In
other words, there were no errors found for that day, even though some may have been reported.

SEW Proceedings 120
SEL-94-O06

6O%

50%

K

10%

Fig. 3. Number of post release cdtcial and serious defect

reports by Group 1 ('_") by day, beginn/ng with Day 11,

as expressed as percentage of baseline.
(Note change of Y-ax/s compared with Fig. 2)

0%

11 21 31 41 51 61 71 81 91 101

Work clay number

Figures 2-5 show individual curves for the three Groups. Figure 2 shows Group l"s up-and-down
behavior during the first 10 days of this study, more characteristic of Groups 2 and 3. Then there
is a steady drop in the number of defects reported by users. Figure 3 illustrates this decrease
more clearly because of a vertical scale change resulting from showing only the data from the
eleventh day onward. Figure 4 shows Group 2's post-release defect discovery history, and Figure
5, Group 3's. Groups 2 and 3 serve as control groups here--they were doing nothing differ-

ently--so there is no reason to expect their defect rates to show changes. Group 3 has a larger
variance than Group 2, and also has many more zero counts.

SEW Proceedings 12.1 SEL-94-006

¢

e#

300%

250%

2OO%

100%

50%

0%

Fig. 4. Number of post release critical and serious defect

reports of Group 2 _'Fagan") by day, expressed as

percentage of baseline average.

11 21 31 41 51 61 71 81 91 101

Wonk day number

e_

300%

250%

200%

150%

100%

50%

O%

1

Fig. 5. Number of post release critical and serious defect

reports for Group 3 ("Gilb"), by day, expressed as percentage

of baseline average.

11 21 31 41 51 61 71 81 91 101

Work day number

SEW Proceedings 122
SEL-94-006

Using the data available, we investigated two questions:

1. How does the decrease in the number of defects discovered post-release by users relate to the

cost to repair those defects? In other words, do users discover the really difficult and expensive-
to-fix defects, or do inspections catch them? We used effort, that is, time, to indicate cost. Repair
data came directly from the defect reports. All groups report the time they spend repairing each
defect. Figure 6 shows our findings: there is a significant reduction in the per-defect cost to repair
user-discovered, post-release defects from Group 1, but not from Groups 2 and 3. We infer from
this that Group 1 is either identifying expensive-to-repair defects before release or learning to
program better in the first place. No special pattern is apparent in the data for Groups 2 and 3.

300% Fi& 6. Repair time of defects by day, expressed as percentage of
baseline. Fagan & Glib = 100%.

--'---'-Grotq>s 2 & 3 _aSan & C,/lb) [

25o% ---'.....'._ roup, (P,/t_]

I1 1,oo, . t. I l

0% i i

Work day nmnber

2. Does some other activity account for the difference in post-release defect discovery? We com-
pared over time the relative effectiveness of testing, inspections, and post-release discovery in

Figures 7-9. Times 1, 2, and 3 in these figures represent times just before inspection training, a
few months after training, and a year or two after training, respectively.

4"

Fig. 7. Percentage of Group I ('l_fkin") defects detected by mechanism over time.

100%

50%

0%

2

T_ep_od(seet_)

[]Test

m Inspections

[] Post Release

SEW Proceedings 12 3 SEL-94-006

It is generally agreed that there are two ways to identify defects pre-release: reviews and test_g.
As noted at the beginning of this paper, inspection is a form of software review. The literature on

the benefits of inspections commonly notes that the percentage of pre-release defects caught by

inspections (and without testing) evolves from 0% before implementing inspections, to 70-80%
after inspections are fully implemented; the remainder of pre-release defects being identified

through testing [Gilb]. That was also Widget's experience, as seen from the figures. The authors
are unaware of any literature about the impact of inspections specifically on post-release defects.

t#

z

Fig. 8. Percentage of Group 2 ("Fagan") defects detected by mechanism over time.

100%

50%

0%

1 2 3

Time period (see rex0

• Test

m Inspections

m Post Release

Figures 8 and 9 indicate that Groups 2 and 3 did not experience a decrease in the percentage of

defects discovered post-release by users, but, according to Figure 7, Group 1 did. In fact, accord-

ing to the figures, the decrease in Group l's post-release defect discovery was due, in large part,

to inspections.

Fig 9. Percentage of Group 3 ("Glib") defects detected by mechanism over time.

100%

50%

0%

1 2 3

Time period bee text)

• Test

m Inspections

• Post Release

SEW Proceedings 124
SEL-94-006

Impllcatlons

Did Group 1 improve simply because we paid attention to it--the so-called Hawthorne effect?
We cannot say, but we have reason to doubt it. Like Groups 2 and 3, Group I knew it was being
trained. It did not know it was being studied, however, as all the data collection and analysis
were done after the fact from routine paperwork. Moreover, the Hawthorne effect presumably
wears off after a time, and we saw no such effect. Some authors even argue that there never was
a Hawthorne effect, that it was an artifact of the underlying Hawthorne site experiment and anal-

ysis [Jones].

The Widget experience suggests a number of inspections-related lessons or, at the very least,
some ideas to be further explored. To begin with, it suggests that we should not be complacent
about having discovered the ultimate form of group software review. Some writings, on inspec-

tions particularly, suggest fixed necessary and sufficient conditions required for effective reviews
[Fagan]. Yet the nature of the defect classification used and the degree to which reviewers "own"
their own process---other distinctive features of the training given members of Group 1--may
play a significant r61e in making reviews useful. The primary lesson to be learned about inspec-
tions, however, is that, in the past, we may have paid too much attention to the global software

review process and too little attention to the conduct of an individual and perhaps weighty pro-
cess, namely the actual review of the software product.

What became obvious from the Widget experience was that individual software professionals
have widely differing, sometimes poorly conceived, comprehension strategies. We often heard
from workshop participants that, for the first time ever, they were able to say with some certainty
that they did or did not understand what they were reviewing.

Comprehension skills can be improved with training. (Ideally, comprehension skills should be
taught much earlier in their careers of software professionals [Deime185].) Better comprehension
skills among reviewers will likely facilitate development of a shared vision of what software

products should look like in order to be understood, a vision that should feed back into the soft-
ware process planning in a more effective way than merely following checklists. In fact, one
author (Rifkin) uses this realization by clients as a milestone to assure that they understand the
critical importance of comprehension: you cannot inspect what you cannot understand. Thus
arises a new entry criterion for inspections: inspectability--can I comprehend what you have

given me to review?

The apparent effectiveness of the inspection workshop is remarkable in light of the relatively
superficial treatment given to program comprehension ideas. We theorize, however, that the
material presented gave attendees a new way to think about programs and about what it means
to examine them. This re-orientation may have been sufficiently powerful in its own right that
the lack of supporting details was not a serious impediment to the development of improved

program comprehension skills. Along with the introduction to program comprehension, we
make the point repeatedly during training that this is just the beginning of a lifelong process of
learning of how to understand what you read. The extensive bibliography of Deimel and
Naveda suggests as much.

This study Points to the importance of comprehension research in stark financial terms, as the
comprehension training seems to have led to the identification of significant software defects not
caught using a more simple-minded approach to software inspection. This research should con-
tinue, and the effect of program comprehension training on the identification of software defects
should be examined in greater detail. It would be interesting, for example, to see the effect of
providing only comprehension training to a group already performing inspections. (What would

happen if Group 2 or 3 were given a 2-3 hour comprehension workshop?)

SEW Proceedings 12 5 SEL-94-006

If indeed comprehension training improves performance during inspections, another interesting
question is what material is most effective to present and what material can be used later to
insure continuously improving inspection results.

Acknowledgments

We are indebted to our colleagues for their comments and feedback: Bill Brykczynski, Marilyn
Bush, Bob Grady, Frank McGarry, K. David Neal, Ron Radice, and Ed Weller.

References

[Ch_arege]

[DeimelSS)

[Deimel90]

[Fag'an]

[Freedman]

[G_b]

[Humphrey]

[Jones]

[Sch6n]

R. ChiUarege, R., et al., "Orthogonal Defect Classification-A Concept for In-
process Measurements," IEEE Trans. Softw. Eng. 18, 11, (November 1992) 943-
956.

Deimel, L.E. "l'he Uses of Program Reading," ACM SIGCSE Bulletin 17, 2
(June 1985) 5-14.

Deimel, L. E., and J. F. Naveda. Reading Computer Programs: Instructor's Guide
and Exerc/ses. Educational Materials CMU/SEI-90-EM-3, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pa., 1990. Available
electronically from the SEI via anonymous ftp from ftp.sei.cmu.edu as files em-
3.ps and em-3code.txt in/pub/education.

Fagan, M.E. "Design and Code Inspections to Reduce Errors in Program
Development." IBM Systems J. 15, 3 (1976), 182-211;. Also Fagan, M. E,.
"Advances in Software Inspections." IEEE Software SE-12, 7 (July 1986) 744-
751;. Also Strauss, S., and R. Ebenau. SofiwareInspection Process,. New York:
McGraw-Hill, 1994.

Freedman, D. P., and G. M. Weinberg. Handbook of Walkthroughs, Inspections,
and Technical Reviews, 3rd Ed. New York: Little, Brown, 1982.

Gilb, T. Principles of Software Engineering Management. Wokingham, England:
Addison-Wesley, 1988, Chapter 12;. Also Gilb, T., and Graham, D. Software
I_. Reading, Mass.: Addison-Wesley, 1993.

Humphrey, W.S. Managing the Software Process. Reading, Mass: Addison-
Wesley, 1989, Section 15.4.3ff.

Jones, S. R. G., "Was There a Hawthorne Effect?" American J. Sociology 98, 3
(November 1992) 451-468.

Sch6n, D. A., The Reflective Practitioner: How Professionals Think in Action. New
York: Basic Books, 1983.

SEW Proceedings 126
SEL-94-006

